
Универсальные калибраторы 5700A/5720

Новый уровень точности для метрологических служб

Прибор 5700А много раз подвергался модификации, и, наконец, фирма Fluke выпустила прибор 5700А серии II — один из самых проверенных и надежных высокоточных калибраторов, которые когда-либо производила данная фирма. Прибор 5700А соответствует принятым во всем мире стандартам калибровки, а по поддерживаемым диапазонам значений и точности он способен работать с $5\frac{1}{2}$ — $7\frac{1}{2}$ разрядными цифровыми универсальными электроизмерительными приборами.

Надежность, простота калибровки, удобство эксплуатации и соответствие мировым стандартам сделали прибор 5700А лучшим в своем роде. Но это еще не все. Прибор 5720А имеет еще лучшие характеристики погрешности, с которыми не может сравниться ни один из многофункциональных калибраторов, имеющихся на рынке. Покупатели могут получить в свое распоряжение прибор, который обладает всеми необходимыми характеристиками для быстрой, простой и надежной калибровки и поверки универсальных измерительных приборов до 8 ½ разрядов в соответс-

твии с самыми высокими требованиями. Такое улучшение технических характеристик стало возможным благодаря заводскому тестированию с минимальными допусками, а также благодаря внедрению целого ряда аппаратных и программных новшеств.

Характеристики для доверительных интервалов 99 % и 95 %

Характеристики приборов 5700А и 5720А указываются для двух доверительных уровней. Вы можете использовать как традиционные спецификации для уровня 99 %, которые всегда указываются фирмой Fluke, так и более агрессивные спецификации для уровня 95 %, которые требуются при проведении многих международных процедур. Помимо того, что характеристики для доверительного уровня 95 % позволяют вам с небольшим риском добиться повышенной производительности, такие характеристики также дают возможность упростить сравнение результатов измерений. Спецификации обоих типов можно вывести на печать нажатием кнопки SPEC для любого отчета.

Совместимость

Приборы 5700A и 5720A могут эмулировать (через удаленный интерфейс) работу калибраторов 5100B и 5200A. Это позволяет производить замену калибраторов старого образца

FLUKE

- ▶ Fluke 5720A: наименьший уровень погрешности воспроизведения среди существующих многофункциональных калибраторов
- ▶ Прибор 5700А серии II: мировой стандарт
- Простота обслуживания при абсолютной надежности с использованием уникальной концепции "Artifact Cal and Cal Check"
- Характеристики для доверительных уровней 99 % и 95 %

Универсальные калибраторы 5700А/5720А

Информация для заказа:

Базовые модели

5720A

калибратор

5700A

калибратор серии II

Расширительные модули

57NNA-N3

широкополосный модуль переменного напряжения

Принадлежности, поставляемые по отдельному заказу

5725A

усилитель (в комплекте с интерфейсным кабелем)

5440A-7002

комплект кабелей с повышенным сопротивлением температурному воздействию

5700A-7002

портативный комплект для артифактной калибровки, включая 732B, 742A-1, 742A-10K,

732B-7001

внешнюю батарею питания зарядное устройство, Fluke 52 цифровой двухканальный термометр,

5400A-7002

комплект испытательных переходников в упроченном транспортном футляре.

732B

стандарт постоянного напряжения

742A-1

1 Ом стандарт сопротивления

742A-10ĸ

10 кОм стандарт сопротивления

Y5701

кабель подключения для 5205А или 5215А

Y5702

кабель для 5220А

Y5737

комплект для монтажа в приборную стойку, включая 24-х дюймовые салазки для 5700A и 5720A

Y5735

комплект для монтажа в приборную стойку, включая 24-х дюймовые салазки для 5725А

Y8021

экранированный интерфейсный кабель IEEE 488, 1 м

Y8022

экранированный интерфейсный кабель IEEE 488, 2 м

Y8023

экранированный интерфейсный кабель IEEE 488, 3 м

в автоматизированных системах таким образом, что изменения не затрагивают или почти не затрагивают используемое программное обеспечение. Кроме того, приборы 5700A и 5720A совместимы с усилителем 5725A, управляемым напряжением усилителем тока 5220A, а также прецизионными усилителями мощности 5205A и 5215A.

Простота обслуживания при абсолютной надежности

Приборы 5700А и 5720А имеют функцию калибровки артефактов. Для полной калибровки всех диапазонов и функций требуются только три стандарта артефактов - эталон 10 В постоянного тока, а также эталонные сопротивления 1 Ом и 10 кОм. На передней панели приводятся инструкции для оператора по монтажу соединений и пошаговому выполнению процедур. Калибратор самостоятельно управляет процессом, который занимает около часа (для сравнения: при использовании традиционных методов процесс длится несколько часов).

Во время выполнения данного процесса назначенные значения внешнего артефакта передаются в большой массив многомерных параметров, хранящийся в приборе 5720A. Калибратор принимает на себя обычно выполняемые вручную метрологические функции по установлению соотношений и прове-

дению сравнений, а также по управлению процедурой измерений.

Для надежности приборы 5700A и 5720A могут самостоятельно проверять себя на соответствие внутренним стандартам: это позволяет гарантировать, что процесс протекает так, как ожидалось. Полученные результаты могут быть выведены на печать или загружены в компьютер.

Тысячи работающих во всем мире калибраторов 5700A, а также результаты независимых исследований, проведенных ведущими национальными организациями по стандартизации в разных странах, подтверждают, что применение технологии калибровки артефактов обеспечивает быструю, простую и недорогую калибровку, гарантируя надежную работу ваших приборов в период между калибровками

Многофункциональные калибраторы 5700A / 5720A

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Технические характеристики

ПОСТОЯННОЕ НАПРЯЖЕНИЕ

Калибратор Fluke 5720A

Диапазон	Разрешение	Абсолютная г	огрешность ± 5°0	С от температурь	і калибровки	Относительна погрешность	
•••	'	24 часа	90 дней	180 дней	1 год	24 часа	90 дней
	II.		-	± (РРМ вы	хода + мкВ)		
95% уровень	достоверности	-1					
220 мВ	10 нВ	4 + 0,4	6 + 0,4	6,5 + 0,04	7,5 + 0,4	1,6 + 0,4	2 + 0,4
2,2 B	100 нВ	3 + 0,7	3,5 + 0,7	4 + 0,7	5 + 0,7	1,6 + 0,7	2 + 0,7
11 B	1 мкВ	2 + 2,5	2,5 + 2,5	3 + 2,5	3,5 + 2,5	0,8 + 2,5	1,2 + 2,5
22 B	1 мкВ	2 + 4	2,5 + 4	3 + 4	3,5 + 4	0,8 + 4	1,2 + 4
220 B	10 мкВ	3 + 40	3,5 + 40	4 + 40	5 + 40	1,6 + 40	2 + 40
1100 B	100 мкВ	4 + 400	4,5 + 400	6 + 400	6,5 + 400	2 + 400	2,4 + 400
99% уровень	достоверности	1	-		-	•	-
220 мВ	10 нВ	5 + 0,5	7 + 0,5	8 + 0,5	9 + 0,5	2 + 0,4	2,5 + 0,4
2,2 B	100 нВ	3,5 + 0,8	4 + 0,8	6 + 0,8	6 + 0,8	2 + 0,8	2,5 + 0,8
11 B	1 мкВ	2,5 + 3	3 + 3	4 + 3	4 + 3	1 + 3	1,5 + 3
22 B	1 мкВ	2,5 + 5	3 + 5	4 + 5	4 + 5	1 + 5	1,5 + 5
220 B	10 мкВ	3,5 + 50	4 + 50	6 + 50	6 + 50	2 + 50	2,5 + 50
1100 B	100 мкВ	5 + 500	6 + 500	7 + 500	8 + 500	2,5 + 400	3 + 400

Калибратор Fluke 5700A Series II

Диапазон	Разрешение	Абсолютная п	огрешность ± 5°C	от температуры кал	пибровки	Относительн ±1°C	ая погрешность
Дианазон	Гаорошонио	24 часа	90 дней	180 дней	1 год	24 часа	90 дней
	•		- 1	± (PPM в	ыхода + мкВ)	•	'
95% уровень	достоверности						
220 мВ	10 нВ	5,5 + 0,6	6 + 0,6	7 + 0,6	8 + 0,6	2 + 0,4	3,5 + 0,4
2,2 B	100 нВ	3,5 + 1	5 + 1	6 + 1	7 + 1	2 + 1	3,5 + 1
11 B	1 мкВ	3 + 3	4 + 3,5	6 + 3,5	7 + 3,5	1,2 + 3	3 + 3,5
22 B	1 мкВ	3 + 5,5	4 + 6,5	6 + 6,5	7 + 6,5	1,2 + 6	3 + 7
220 B	10 мкВ	4 + 80	5 + 80	7 + 80	8 + 80	2 + 80	3,5 + 80
1100 B	100 мкВ	6 + 500	7 + 500	8 + 500	9 + 500	2,4 + 500	4 + 500
99% уровень	достоверности	•	•	•	•	•	•
220 мВ	10 нВ	6,5 + 0,75	7 + 0,75	8 + 0,75	9 + 0,8	2,5 + 0,5	4 + 0,5
2,2 B	100 нВ	3,5 + 1,2	6 + 1,2	7 + 1,2	8 + 1,2	2,5 + 1,2	4 + 1,2
11 B	1 мкВ	3,5 + 3	5 + 4	7 + 4	8 + 4	1,5 + 3	3,5 + 4
22 B	1 мкВ	3,5 + 6	5 + 8	7 + 8	8 + 8	1,5 + 6	3,5 + 8
220 B	10 мкВ	5 + 100	6 + 100	8 + 100	9 + 100	2,5 + 100	4 + 100
1100 B	100 мкВ	7 + 600	8 + 600	10 + 600	11 + 600	3 + 600	4,5 + 600

5720A/5700A Series II спецификация вторичных параметров и рабочих характеристик

		Температур	оный коэффициент	Линейность±1°C	Полоса частот	шумов	
Диапазон	Стабильность ¹ ±1°С 24 часа	10°C40 °C	0°C10°C 40°C . 50°C		0,1 . 10 Гц двойного размаха амплитуды	10 Гц10 кГц среднеквадрат. величина	
	± (РРМ выхода + мкВ)	± (РРМ выхода + мкВ)/°С		± (РРМ вых	кода + мкВ)	мкВ	
220 мВ	0,3 + 0, 3	0,4 + 0,1	1,5 + 0,5	1 + 0,2	0,15 + 0,1	5	
2,2 B	0,3 + 1	0,3 + 0,1	1,5 + 2	1 + 0,6	0,15 + 0,4	15	
11 B	0,3 + 2,5	0,15 + 0,2	1 + 1,5	0,3 + 2	0,15 + 2	50	
22 B	0,4 + 5	0,2 + 0,4	1,5 + 3	0,3 + 4	0,15 + 4	50	
220 B	0,5 + 40	0,3 + 5	1,5 + 40	1 + 40	0,15 + 60	150	
1100 B	0,5 + 200	0,5 + 10	3 + 200	1 + 200	0,15 + 300	500	

^{1.} стабильность включена в абсолютную погрешность в приведенных выше первичных таблицах

Минимальный выход: 0 В для всех диапазонов, за исключением 100 В для диапазона 1100 В.

Максимальная нагрузка: 50 мА для диапазонов от 2,2 В до 1100 В; 20 мА для диапазона 1100 В; выходной импеданс 50 Ом для диапазона 220 мВ; для всех диапазонов емкость < 1000 пФ, импеданс > 25 Ом

Влияние нагрузки (load regulation): изменение менее (0,2 PPM + 0,2 мВ) от полной до нулевой нагрузки

Изменение линейности (line regulation): изменение <0,1 PPM в диапазоне ± 10% от заданного номинала

Время установки: 3 секунды до полной точности; + 1 секунда при смене диапазона или полярности; + 1 секунда для диапазона 1100 В Перегрузка (overshoot): <5%

Подавление синфазных помех: 140 дБ от постоянного тока до частоты 400 Гц

Дистанционная чувствительность (remote sensing): возможна от 0 до ± 1100 В для диапазонов от 2,2 В до 1100 В, включительно.

ПЕРЕМЕННОЕ НАПРЯЖЕНИЕ

Калибратор Fluke 5720A

			Абсолютна	ая погрешность ± 5°	Относительная погрешность±1°С			
Диапазон	Разрешение	Частота	24 часа	90 дней	180 дней	1 год	24 часа	90 дней
					± (РРМ вь	іхода + мкВ)		
2,2 мВ	1 нВ	1020 Гц	200 + 4	220 + 4	230 + 4	240 + 4	200 + 4	220 + 4
		2040 Гц	80 + 4	85 + 4	87 + 4	90 + 4	80 + 4	85 + 4
		40Гц20 кГц	70 + 4	75 + 4	77 + 4	80 + 4	50 + 5	55 + 4
		2050 кГц	170 + 4	180 + 4	190 + 4	200 + 4	70 + 5	80 + 4
		50100 кГц	400 + 5	460 + 5	480 + 5	500 + 5	160 + 5	180 + 5
		100300 кГц	300 + 10	900 + 10	1000 + 10	1050 + 10	280 + 10	320 + 10
		300500 кГц	1100 + 20	1200 + 20	1300 + 20	1400 + 20	650 + 20	800 + 20
		500кГц1МГц	2400 + 20	2500 + 20	2600 + 20	2700 + 20	2100 + 20	2400 + 20
22 мВ	10 нВ	1020 Гц	200 + 4	220 + 4	230 + 4	240 + 4	200 + 4	220 + 4
		2040 Гц	80 + 4	85 + 4	87 + 4	90 + 4	80 + 4	85 + 4
		40Гц20 кГц	70 + 4	75 + 4	77 + 4	80 + 4	50 + 5	55 + 4
		2050 кГц	170 + 4	180 + 4	190 + 4	200 + 4	70 + 5	80 + 4
		50100 кГц	400 + 5	460 + 5	480 + 5	500 + 5	160 + 5	180 + 5
		100300 кГц	300 + 10	900 + 10	1000 + 10	1050 + 10	280 + 10	320 + 10
		300500 кГц	1100 + 20	1200 + 20	1300 + 20	1400 + 20	650 + 20	800 + 20
		500кГц1МГц	2400 + 20	2500 + 20	2600 + 20	2700 + 20	2100 + 20	2400 + 20

^{2 .} температурный коэффициент указывает на дополнительную погрешность, добавляемую к погрешности при отклонении температуры окружающей среды более, чем на ± 5°C от температуры калибровки

220 мВ	100 нВ	1020 Гц	200 + 12	220 + 12	230 + 12	240 + 12	200 + 12	220 + 12
		2040 Гц	80 + 7	85 + 7	87 + 7	90 + 7	80 + 7	85 + 7
		40Гц20 кГц	70 + 7	75 + 7	77 + 7	80 + 7	50 + 7	55 + 7
		2050 кГц	170 + 7	180 + 7	190 + 7	200 + 7	70 + 7	80 + 7
		50100 кГц	400 + 17	420 + 17	440 + 17	460 + 17	160 + 17	180 + 17
		100300 кГц	700 + 20	750 + 20	800 + 20	900 + 20	280 + 20	320 + 20
		300500 кГц	1100 + 25	1200 + 25	1300 + 25	1400 + 25	650 + 25	800 + 25
		500кГц1МГц	2400 + 45	2500 + 45	2600 + 45	2700 + 45	2100 + 45	2400 + 45
2,2 B	1 мкВ	1020 Гц	200 + 40	220 + 40	230 + 40	240 + 40	200 + 40	220 + 40
		2040 Гц	75 + 15	80 + 15	85 + 15	90 + 15	75 + 15	80 + 15
		40Гц20 кГц	37 + 8	40 + 8	42 + 8	45 + 8	25 + 8	35 + 8
		2050 кГц	65 + 10	70 + 10	73 + 10	75 + 10	55 + 10	60 + 10
		50100 кГц	100 + 30	105 + 30	107 + 30	110 + 300	80 + 30	85 + 30
		100300 кГц	300 + 80	340 + 80	380 + 80	420 + 80	230 + 80	250 + 80
		300500 кГц	800 + 200	900 + 200	950 + 200	1000 + 200	700 + 200	800 + 200
		500кГц1МГц	1300 + 300	1500 + 300	1600 + 300	1700 + 300	1000 + 300	1100 + 300
22 B	10 мкВ	1020 Гц	200 + 400	220 + 400	230 + 400	240 + 400	200 + 400	220 + 400
		2040 Гц	75 + 150	80 + 150	85 + 150	90 + 150	75 + 150	80 + 150
		40Гц20 кГц	37 + 50	40 + 50	42 + 50	45 + 50	25 + 50	35 + 50
		2050 кГц	65 + 100	70 + 100	73 + 100	75 + 100	55 + 100	60 + 100
		50100 кГц	90 + 200	95 + 200	97 + 200	100 + 200	80 + 200	85 + 200
		100300 кГц	250 + 600	260 + 600	270 + 600	275 + 600	250 + 600	270 + 600
		300500 кГц	800 + 2000	900 + 2000	900 + 2000	1000 + 2000	700 + 2000	800 + 2000
		500кГц1МГц	1300 + 3200	1300 + 3200	1400 + 3200	1500 + 3200	1100 + 3200	1200 + 3200
				±	(РРМ выхода + м	B)		
220 B	100 мкВ	1020 Гц	200 + 4	220 + 4	230 + 4	240 + 4	200 + 4	220 + 4
		2040 Гц	75 + 1,5	80 + 1,5	85 + 1,5	90 + 1,5	75 + 1,5	80 + 1,5
		40Гц20 кГц	45 + 0,6	47 + 0,6	50 + 0,6	52 + 0,6	35 + 0,6	40 + 0,6
		2050 кГц	70 + 1	75 + 1	77+ 1	20 + 1	60 + 1	65 + 1
220 B	100 мкВ	50100 кГц	120 + 2,5	130 + 2,5	140 + 2,5	150 + 2,5	110 + 2,5	120 + 2,5
		100300 кГц	700 + 16	800 + 16	850 + 16	900 + 16	500 + 16	600 + 16
		300500 кГц	4000 + 40	4200 + 40	4300 + 40	4400 + 40	3600 + 40	3800 + 20
		500кГц.1МГц	6000 + 80	7000 + 80	7500 + 80	8000 + 80	6500 + 80	7000 + 80
1100 B	1 мВ	1550 Гц ¹	240 + 16	260 + 16	280 + 16	300 + 16	240 + 16	260 + 16
		50 Гц1 кГц	55 + 3,5	60 + 3,5	65 + 3,5	70 + 3,5	40 + 3,5	45 + 3,5
Усилител	ь тока Fluke	5725A						
1100 B	1 мВ	40 Гц1 кГц	75 + 4	80 + 4	85 + 4	90 + 4	50 + 4	55 + 4
		120 кГц	105 + 6	125 + 6	135 + 6	165 + 6	85 + 6	105 + 6
		2030 кГц	230 + 11	360 + 11	440 + 11	600 + 11	160 + 11	320 + 11
750 B	1 мВ	3050 кГц	230 + 11	360 + 11	440 + 11	600 + 11	160 + 11	320 + 11
		50100 кГц	600 + 45	1300 + 45	1600 + 45	2300 + 45	380 + 45	1200 + 45
	_							

¹ . максимальный выход 250 В в диапазоне 15 . 50 Гц

Калибратор Fluke 5720A

_			Абсолютная п	огрешность ± 5°C	от температуры к	алибровки	Относительна	я погрешность±1°С
Диапазон	Разрешение	Частота	24 часа	90 дней	180 дней	1 год	24 часа	90 дней
				± (РРМ выхода +				** H.***
2,2 мВ	1 нВ	1020 Гц	250 + 5	270 + 5	290 + 5	300 + 5	250 + 5	270 + 5
,		2040 Гц	100 + 5	105 + 5	110 + 5	115 + 5	100 + 5	105 + 5
		40Гц20 кГц	85 + 5	90 + 5	95 + 5	100 + 5	60 + 5	65 + 5
		2050 кГц	220 + 5	230 + 5	240 + 5	250 + 5	85 + 5	95 + 5
		50100 кГц	500 + 6	540 + 6	570 + 6	600 + 6	200 + 6	220 + 6
		100300 кГц	1000 + 12	1200 + 12	1250 + 12	1300 + 12	350 + 12	400 + 12
		300500 кГц	1400 + 25	1500 + 25	1500 + 25	1700 + 25	800 + 25	1000 + 25
		500кГц1МГц	2900 + 25	3100 + 25	3200 + 25	3400 + 25	2700 + 25	3000 + 25
22 мВ	10 нB	1020 Гц	250 + 5	270 + 5	290 + 5	300 + 5	250 + 5	270 + 5
		2040 Гц	100 + 5	105 + 5	110 + 5	115 + 5	100 + 5	105 + 5
		40Гц20 кГц	85 + 5	90 + 5	95 + 5	100 + 5	60 + 5	65 + 5
		2050 кГц	220 + 5	230 + 5	240 + 5	250 + 5	85 + 5	95 + 5
		50100 кГц	500 + 6	540 + 6	570 + 6	600 + 6	200 + 6	220 + 6
		100300 кГц	1000 + 12	1200 + 12	1250 + 12	1300 + 12	350 + 12	400 + 12
		300500 кГц	1400 + 25	1500 + 25	1500 + 25	1700 + 25	800 + 25	1000 + 25
		500кГц1МГц	2900 + 25	3100 + 25	3200 + 25	3400 + 25	2700 + 25	3000 + 25
220 мВ	100 нВ	1020 Гц	250 + 15	270 + 15	290 + 15	300 + 15	250 + 15	270 + 15
		2040 Гц	100 + 8	105 + 8	110 + 8	115 + 8	100 + 8	105 + 8
		40Гц20 кГц	85 + 8	90 + 8	95 + 8	100 + 8	60 + 8	65 + 8
		2050 кГц	220 + 8	230 + 8	240 + 8	250 + 8	85 + 8	95 + 8
		50100 кГц	500 + 20	540 + 20	570 + 20	600 + 20	200 + 20	220 + 20
		100300 кГц	850 + 25	900 + 25	1000 + 25	1100 + 25	350 + 25	400 + 25
		300500 кГц	1400 + 30	1500 + 30	1600 + 30	1700 + 30	800 + 30	1000 + 30
		500кГц1МГц	2700 + 60	2900 + 60	3100 + 60	3300 + 60	2600 + 60	2800 + 60
2,2 B	1 мкВ	1020 Гц	250 + 50	270 + 50	290 + 50	300 + 50	250 + 50	270 + 50
		2040 Гц	95 + 20	100 + 20	105 + 20	110 + 20	95 + 20	100 + 20
		40Гц20 кГц	45 + 10	47 + 10	50 + 10	52 + 10	30 + 10	40 + 10
		2050 кГц	80 + 12	85 + 12	87 + 12	90 + 12	70 + 12	75 + 12
		50100 кГц	120 + 40	125 + 40	127 + 40	130 + 40	100 + 40	105 + 40
		100300 кГц	380 + 100	420 + 100	460 + 100	500 + 100	270 + 100	290 + 100
		300500 кГц	1000 + 250	1100 + 250	1150 + 250	1200 + 250	900 + 250	1000 + 250
		500кГц1МГц	1600 + 400	1800 + 400	1900 + 400	2000 + 400	1200 + 400	1300 + 400
22 B	10 мкВ	1020 Гц	250 + 500	270 + 500	290 + 500	300 + 500	250 + 500	270 + 500
		2040 Гц	95 + 200	100 + 200	105 + 200	110 + 200	95 + 200	100 + 200
		40Гц20 кГц	45 + 70	47 + 70	50 + 70	52 + 70	30 + 70	40 + 70
		2050 кГц	80 + 120	85 + 120	87 + 120	90 + 120	70 + 120	75 + 120
		50100 кГц	110 + 250	115 + 250	117 + 250	130 + 250	100 + 250	105 + 250
		100300 кГц	300 + 800	310 + 800	320 + 800	325 + 800	270 + 800	290 + 800
		300500 кГц	1000 + 2500	1100 + 2500	1150 + 2500	1200 + 2500	900 + 2500	1000 + 2500
		500кГц1МГц	1500 + 4000	1600 + 4000	1700 + 4000	1800 + 4000	1300 + 4000	1400 + 4000

				± (РРМ выхода	+ мВ)			
220 B	100 мкВ	1020 Гц	250 + 50	270 + 5	290 + 5	300 + 5	250 + 5	270 + 5
		2040 Гц	95 + 2	100 + 2	105 + 2	110 + 2	95 + 2	100 + 2
		40Гц20 кГц	57 + 0,7	60 + 0,7	62 + 0,7	65 + 0,7	45 + 0,7	50 + 0,7
		2050 кГц	90 + 1,2	95 + 1,2	97 + 1,2	100 + 1,2	75 + 1,2	80 + 1,2
		50100 кГц	160 + 3	170 + 3	175 + 3	180 + 3	140 + 3	150 + 3
		100300 кГц	900 + 20	1000 + 20	1050 + 20	1100 + 20	600 + 20	700 + 20
		300500 кГц	5000 + 50	5200 + 50	5300 + 50	5400 + 50	4500 + 50	4700 + 50
		500кГц1МГц	8000 + 100	9000 + 100	9500 + 100	10000 + 100	8000 + 100	8500 + 100
1100 B	1 мВ	1550 Гц ¹	300 + 20	320 + 20	340 + 20	360 + 20	300 + 20	320 + 20
		50 Гц1 кГц	70 + 4	75 + 4	80 + 4	85 + 4	50 + 4	55 + 4
Усилитель	тока Fluke 5725	iΑ	•		-	-	•	•
1100 B	1 мВ	40 Гц1 кГц	75 + 4	80 + 4	85 + 4	90 + 4	50 + 4	55 + 4
		120 кГц	105 + 6	125 + 6	135 + 6	165 + 6	85 + 6	105 + 6
		2030 кГц	230 + 11	360 + 11	440 + 11	600 + 11	160 + 11	320 + 11
750 B	1 мВ	3050 кГц	230 + 11	360 + 11	440 + 11	600 + 11	160 + 11	320 + 11
		50100 кГц	600 + 45	1300 + 45	1600 + 45	2300 + 45	380 + 45	1200 + 45

¹ . максимальный выход 250 В в диапазоне 15 . 50 Гц

Калибратор Fluke 5700A Series II

Диапазон	Разрешение	Частота	Абсолютная п	огрешность ± 5°C (Относительная погрешность±1°С			
дианазон	Тазрешение	lacioia	24 часа	90 дней	180 дней	1 год	24 часа	90 дней
± (РРМ выхо	да + мкВ)	<u></u>			I.			
2,2 мВ	1 нВ	1020 Гц	400 + 4,5	500 + 4,5	530 + 4,5	550 + 4,5	400 + 4,5	500 + 4,5
		2040 Гц	170 + 4,5	190 + 4,5	200 + 4,5	210 + 4,5	170 + 4,5	190 + 4,5
		40Гц20 кГц	85 + 4,5	95 + 4,5	100 + 4,5	105 + 4,5	55 + 4,5	60 + 4,5
		2050 кГц	300 + 4,5	330 + 4,5	350 + 4,5	370 + 4,5	90 + 4,5	100 + 4,5
		50100 кГц	700 + 7	750 + 7	800 + 7	850 + 7	210 + 7	230 + 7
		100300 кГц	900 + 13	1000 + 13	1050 + 13	1100 + 13	380 + 13	420 + 13
		300500 кГц	1300 + 25	1500 + 25	1600 + 25	1700 + 25	900 + 25	1000 + 25
		500кГц1МГц	2800 + 25	3100 + 25	3300 + 25	3400 + 25	2900 + 25	3200 + 25
22 мВ	10 нВ	1020 Гц	400 + 5	500 + 5	530 + 5	550 + 5	400 + 5	500 + 5
		2040 Гц	170 + 5	190 + 5	200 + 5	210 + 5	170 + 5	190 + 5
		40Гц20 кГц	85 + 5	95 + 5	100 + 5	105 + 5	55 + 5	60 + 5
		2050 кГц	300 + 5	330 + 5	350 + 5	370 + 5	90 + 5	100 + 5
		50100 кГц	700 + 7	750 + 7	800 + 7	850 + 7	210 + 7	230 + 7
		100300 кГц	900 + 12	1000 + 12	1050 + 12	1100 + 12	380 + 12	420 + 12
		300500 кГц	1300 + 25	1500 + 25	1600 + 25	1700 + 25	900 + 25	1000 + 25
		500кГц1МГц	2800 + 25	3100 + 25	3300 + 25	3400 + 25	2900 + 25	3200 + 25
220 мВ	100 нВ	1020 Гц	400 + 13	500 + 13	530 + 13	550 + 13	400 + 13	500 + 13
		2040 Гц	170 + 8	190 + 8	200 + 8	210 + 8	170 + 8	190 + 8
		40Гц20 кГц	85 + 8	95 + 8	100 + 8	105 + 8	55 + 8	60 + 8
		2050 кГц	250 + 8	280 + 8	300 + 8	320 + 8	90 + 8	100 + 8
		50100 кГц	700 + 25	750 + 25	800 + 25	850 + 25	210 + 25	230 + 25
		100300 кГц	900 + 25	1000 + 25	1050 + 25	1100 + 25	380 + 25	420 + 25
		300500 кГц	1300 + 35	1500 + 35	1600 + 35	1700 + 35	900 + 35	1000 + 35
		500кГц1МГц	2800 + 80	3100 + 80	3300 + 80	3400 + 80	2900 + 80	3200 + 80

								•
2,2 B	1 мкВ	1020 Гц	400 + 80	450 + 80	480 + 80	500 + 80	400 + 80	450 + 80
		2040 Гц	130 + 25	140 + 25	150 + 25	160 + 25	130 + 25	140 + 25
		40Гц20 кГц	60 + 6	65 + 6	70 + 6	75 + 6	35 + 6	40 + 6
		2050 кГц	105 + 16	110 + 16	115 + 16	120 + 16	85 + 16	95 + 16
		50100 кГц	190 + 70	210 + 70	230 + 70	250 + 70	170 + 70	190 + 70
		100300 кГц	350 + 130	390 + 130	420 + 130	430 + 130	340 + 130	380 + 130
		300500 кГц	850 + 350	950 + 350	1000 + 350	1050 + 350	850 + 350	950 + 350
		500кГц1МГц	1700 + 850	1900 + 850	2100 + 850	2200 + 850	1700 + 850	1900 + 850
22 B	10 мкВ	1020 Гц	400 + 800	450 + 800	480 + 800	500 + 800	400 + 800	450 + 800
		2040 Гц	130 + 250	140 + 250	150 + 250	160 + 250	130 + 250	140 + 250
		40Гц20 кГц	60 + 60	65 + 60	70 + 60	75 + 60	35 + 60	40 + 60
		2050 кГц	105 + 160	110 + 160	115 + 160	120 + 160	85 + 160	95 + 160
		50100 кГц	190 + 350	210 + 350	230 + 350	250 + 350	170 + 350	190 + 350
		100300 кГц	400 + 1500	450 + 1500	470 + 1500	500 + 1500	400 + 1500	450 + 1500
		300500 кГц	1050 + 4300	1150 + 4300	1200 + 4300	1250 + 4300	1000 + 4300	1100 + 4300
		500кГц1МГц	2300 + 8500	2500 + 8500	2600 + 8500	2700 + 8500	2200 + 8500	2400 + 8500
			±	(РРМ выхода + м	иВ)			•
220 B	100 мкВ	1020 Гц	400 + 8	450 + 8	480 + 8	500 + 8	400 + 8	450 + 8
		2040 Гц	130 + 2,5	140 + 2,5	150 + 2,5	160 + 2,5	130 + 2,5	140 + 2,5
		40Гц20 кГц	65 + 0,8	70 + 0,8	75 + 0,8	80 + 0,8	40 + 0,8	45 + 0,8
		2050 кГц	170 + 3,5	190 + 3,5	210 + 3,5	220 + 3,5	85 + 3,5	95 + 3,5
		50100 кГц	400 + 8	450 + 8	480 + 8	500 + 8	270 + 8	300 + 8
		100300 кГц	1300 + 90	1400 + 90	1450 + 90	1500 + 90	1200 + 90	1300 + 90
		300500 кГц	4300 + 90	4500 + 90	4600 + 90	4700 + 90	4200 + 90	4500 + 90
		500кГц1МГц	10500 + 190	11000 + 190	11300 + 190	11500 + 190	10500 + 190	11000 + 190
1100 B	1 мВ	1550 Гц ¹	340 + 16	360 + 16	380 + 16	400 + 16	340 + 16	360 + 16
		50 Гц1 кГц	65 + 3,5	70 + 3,5	75 + 3,5	80 + 3,5	45 + 3,5	50 + 3,5
			Усили	тель тока Fluke	e 5725A		•	•
1100 B	1 мВ	40 Гц1 кГц	75 + 4	80 + 4	85 + 4	90 + 4	50 + 4	55 + 4
		120 кГц	105 + 6	125 + 6	135 + 6	165 + 6	85 + 6	105 + 6
		2030 кГц	230 + 11	360 + 11	440 + 11	600 + 11	160 + 11	320 + 11
750 B	1 мВ	3050 кГц	230 + 11	360 + 11	440 + 11	600 + 11	160 + 11	320 + 11
		50100 кГц	600 + 45	1300 + 45	1600 + 45	2300 + 45	380 + 45	1200 + 45
	1	L	1	1	I .	1	1	1

¹ . максимальный выход 250 В в диапазоне 15 . 50 Гц

Калибраторы Fluke 5720A/5700A Series II спецификация вторичных параметров и рабочих характеристик

	Частота	Стабильность ±1°С¹	Температурнь	ій коэффициент	Выходной	Максимальные искажения в
Диапазон	частота	за 24 часа	10°C .40°C	0°C .10°C 40°C 50°C	импеданс	диапазоне 10 Гц . 10 МГц
		± мкВ	± мкВ ± мкВ/°С		Ом	± (%выхода + мкВ)
2,2 мВ	1020 Гц	5	0,05	0,05		0,05 + 10
	2040 Гц	5	0,05	0,05		0,035 + 10
	40Гц20 кГц	2	0,05	0,05		0,035 + 10
	2050 кГц	2	0,1	0,1	50	0,035 + 10
	50100 кГц	3	0,2	0,2]	0,035 + 10
	100300 кГц	3	0,3	0,3		0,3 + 30
	300500 кГц	5	0,4	0,4	7	0,3 + 30
	500кГц1МГц	5	0,5	0,5		1 + 30

22 мВ	1020 Гц	5	0,2 0,3			0,05 + 11
	2040 Гц	5	0,2 0,3		1	0,035 + 11
	40Гц20 кГц	2	0,2 0,3			0,035 + 11
	2050 кГц	2	0,4 0,5		50	0,035 + 11
	50100 кГц	3	0,5 0,5			0,035 + 11
	100300 кГц	5	0,6	0,6		0,3 + 30
	300500 кГц	10	1	1	1	0,3 + 30
	500кГц1МГц	15	11		1	1 + 30
		± (РРМ выхода + мкВ)	± (РРМ выхо	да + мкВ/°С)		
220 мВ	1020 Гц	150 + 20	2 + 1	2 + 1		0,05 + 16
	2040 Гц	80 + 15	2 + 1	2 + 1		0,035 + 16
	40Гц20 кГц	12 + 2	2 + 1	2 + 1]	0,035 + 16
	2050 кГц	10 + 2	15 + 2	15 + 2	50	0,035 + 16
	50100 кГц	10 + 2	15 + 4	15 + 4]	0,035 + 16
	100300 кГц	20 + 4	80 + 5	80 + 5		0,3 + 30
	300500 кГц	100 + 10	80 + 5	80 + 5		0,3 + 30
	500кГц1МГц	200 + 20	80 + 5	80 + 5		1 + 30
					Влияние нагрузки ± (РРМ выхода + мкВ)	
2,2 B	1020 Гц	150 + 20	50 + 10	50 + 10	10 + 2	0,05 + 80
	2040 Гц	80 + 15	15 + 5	15 + 5	10 + 2	0,035 + 80
	40Гц20 кГц	12 + 4	2 + 1	2 + 1	10 + 4	0,035 + 80
	2050 кГц	15 + 5	10 + 2	10 + 2	30 + 10	0,035 + 80
	50100 кГц	15 + 5	10 + 4	10 + 4	120 + 16	0,035 + 80
	100300 кГц	30 + 10	80 + 15	80 + 15	300 PPM	0,3 + 110
	300500 кГц	70 + 20	80 + 40	80 + 40	600 PPM	0,3 + 110
22.7	500кГц1МГц	150 + 50	80 + 100	80 + 100	1200 PPM	1 + 110
22 B	1020 Гц	150 + 20	50 + 100	50 + 100	10 + 20	0,05 + 700
	2040 Гц	80 + 15	15 + 30	15 + 40	10 + 20	0,035 + 700
	40Гц20 кГц	12 + 8	2 + 10	4 + 15	10 + 30	0,035 + 700
	2050 кГц	15 + 10	10 + 20	20 + 20	30 + 50	0,035 + 700
	50100 кГц	15 + 10	10 + 40	20 + 40	80 + 80	0,035 + 700
	100300 кГц 300500 кГц	30 + 15 70 + 100	80 + 150 80 + 300	80 + 150 80 + 300	100 + 700 200 + 1100	0,3 + 800 0,3 + 800
	500кГц1МГц	150 + 100	80 + 500	80 + 500	600 + 3000	1 + 800
220 B	1020 Гц	150 + 200	50 + 1000	50 + 1000	10 + 200	0,05 + 10000
	2040 Гц	80 + 150	15 + 300	15 + 300	10 + 200	0,05 + 10000
	40Гц20 кГц	12 + 80	2 + 80	4 + 80	10 + 300	0,05 + 10000
	2050 кГц	15 + 100	10 + 100	20 + 100	30 + 600	0,05 + 10000
	50100 кГц	15 + 10	10 + 500	20 + 500	80 + 3000	0,1 + 13000
	100300 кГц	30 + 400	80 + 600	80 + 600	250 + 25000	1,5 + 50000
	300500 кГц	100 + 10000	80 + 800	80 + 800	500 + 50000	1,5 + 50000
	500кГц1МГц	200 + 20000	80 + 1000	80 + 1000	1000 + 110000	3,5 + 100000
	Јоокі ц ПИП Ц	± (РРМ выхода + мкВ)	00 + 1000	± (PPM	1000 + 110000	± (%выхода)
		± (ГРИ ВЫХОДА Т МКВ)		± (РРМ выхода)/°С		т (\0 R PIY ОН a)
1100 B	1550 Гц ¹	150 + 0,5	50	50	10 + 2	0,15
	50 Гц1 кГц	20 + 0,5	2	5	10 + 1	0,07
		I.		1	1	I.

Усилител	ь тока Fluke 5725	A					
Диапазон	Частота	Стабильность ±1°С ¹	ость ±1°С ¹ Температурный коэффициент		Влияние нагрузки ²	Максимальные искажения в диапазоне 10 Гц . 10 МГц	
диапазон частота		за 24 часа	10°C .40°C	0°C .10°C 40°C .50°C	— Блияние нагрузки		
		± (РРМ выхода + мкВ) ± (РРМ выхода)/°С		M 51 180 50\/°C	± (DDM purvers ± uP)	± (%выхода)	
		± (РРМ выхода + мкВ)	I (PP)	и выхода)/ ℃	± (РРМ выхода + мВ)	150 пФ	1000 пФ
1100 B	40 Гц1 кГц	10 + 0,5	5	5	10 + 1	0,10	0,10
	120 кГц	15 + 2	5	5	90 + 6	0,10	0,15
	2050 кГц	40 + 2	10 10		275 + 11	0,30	0,30
	50100 кГц	130 + 2	30	30	500 + 30	0,40	0,40

Диапазон напряжения	Максимальный ток		Предельная нагрузка
2,2 B ³			
22 B	50 мА,	0°C .40°C	> 50 Om
220 B	20 мА, 4	10°C .50°C	1000 пФ
1100 B	6	мА	600 пФ
Усилитель тока Fluke 5725A			1000 пФ ²
	40 Гц5 кГц	50 мА	300 пФ
1100 B	5 кГц30 кГц 70 мA		300 ΠΦ
	30 кГц100 кГц	70 мА ⁴	150 пФ

[.] максимальный выход 250 В в диапазоне 15 . 50 Гц

Форматы выходного дисплея: В или дБм (относительно нагрузки 600 Ом) Минимальный выходной сигнал: 10% (шкалы) для всех диапазонов

Дистанционная чувствительность: переключаемая для 2,2 В; 22 В; 220 В и 1100 В диапазонов;

5700A/5720A < 100 кГц; 5725A < 30 кГц

Время установки на полную заявленную точность:

Частота	Время установки (сек)
< 20 Гц	7
120 Гц . 120 кГц	5
> 120 кГц	2

Примечание: к табличным значениям необходимо добавить: 1 секунду при смене диапазонов; 2 секунды для диапазона 1100 В (калибраторы 5700A/5720A); 4 секунды для диапазона 1100 В (усилитель 5725A)

Перегрузка: < 10%

Подавление синфазных помех: 140 дБ; 0 (постоянный ток) . 400 Гц

Частота

Диапазоны: 10,000...11,999 Гц; 12,00...119,99 Гц; 120,0...1199,9 Гц; 1,200 кГц...11,999 кГц; 12,00...119,99 кГц; 120,0...1199,9 кГц;

Погрешность: ± 0,01% **Разрешение:** 11,999 (подсчет)

Синхронизация (phase lock): вход BNC на задней панели (задаваемый)

Фазовая погрешность (кроме диапазона 1100В): > 30 Гц: \pm 1° + 0,05°/Гц; < 30 Гц: \pm 3°

Входное напряжение: 1 В...10 В среднеквадратичное значение синусоидальной волны (не превышает 1 В для мВ диапазонов)

Частотный диапазон: 10 Гц...1,1999 МГц

Диапазон синхронизации (захвата фазы): $\pm 2\%$ от значения частоты **Время до синхронизации (lock-in time):** Большее из 10/частоту или 10 мсек

Опорная фаза: задаваемая через выход BNC на задней панели

Диапазон: ± 180°

Погрешность фазы (кроме диапазона 1100В): $\pm 1^{\circ}$ в квадратурных точках (0° , $\pm 90^{\circ}$, $\pm 180^{\circ}$), во всех других $\pm 2^{\circ}$

Стабильность: ± 0,1° Разрешение: 1°

Амплитуда выходного сигнала: 2,5 В_{эфф} ± 0,2 В

Частотный диапазон: 50 Гц. 1 кГц, полезный диапазон 10 Гц...1,1999 МГц

². Усилитель 5725A работает с емкостными нагрузками до 1000 пФ. Специфицированные погрешности, включая нагрузки до 300 пФ и 150 пФ, находятся в приведенных пределах. Для больших емкостных нагрузок, вплоть до максимальной 1000 пФ, необходимо учесть (добавить) влияние нагрузки

³ . в диапазоне до 2,2 В справедливо только в полосе частот 100 кГц . 1,2 МГц; специфицированные погрешности даны для нагрузок до 10 мА или 1000 пФ. Для больших нагрузок необходимо учесть (добавить) влияние нагрузки.

⁴ . справедливо в диапазоне 0°C . 40°C.

ЭЛЕКТРИЧЕСКОЕ СОПРОТИВЛЕНИЕ

Калибратор Fluke 5720A

Номинал	Абсолютная погрешн	ость характеристическ	ой величины ± 5°C от t°	° калибровки ¹	Относительная погре	ешность ±1°С
	24 часа	90 дней	180 дней	1 год	24 часа	90 дней
			± P	PM		
95% уровень д	цостоверности					
0 Ом	40 мкОм 4	0 мкОм	40 мкОм	40 мкОм	40 мкОм	40 мкОм
1 Ом	70	80	85	95	27	35
1,9 Ом	70	80	85	95	20	26
10 Ом	20	21	22	23	4	7
19 Ом	20	21	22	23	3,5	6
100 Ом	8 9	9,	5	10	1,6	3,5
190 Ом	89	9,	5	10	1,6	3,5
1 кОм	6,5	7,5	8	8,5	1,6	2,5
1,9 кОм	6,5	7,5	8	8,5	1,6	2,5
10 кОм	6,5	7,5	8	8,5	1,6	2,5
19 кОм	7,5	7,5	8	8,5	1,6	2,5
100 кОм	7,5	9	10	11	1,6	2,5
190 кОм	7,5	9	10	11	1,6	2,5
1 МОм	13	15	17	20	2	4
1,9 МОм	14	16	18	21	2,5	4
10 МОм	27	31	34	40	8	12
19 МОм	35	39	42	47	16	20
100 МОм	85	95	100	100	40	50
99% уровень д	цостоверности					
0 Ом	50 мкОм	50 мкОм	50 мкОм	50 мкОм	50 мкОм	50 мкОм
1 Ом	85 95	100	110	32	40	
1,9 Ом	85 95	100	110	25	33	
10 Ом	23	25	26	27	5	8
19 Ом	23	25	26	27	4	7
100 Ом	10	11	11,5	12	2	4
190 Ом	10	11	11,5	12	2	4
1 кОм	8	9	9,5	10	2	3
1,9 кОм	8	9	9,5	10	2	3
10 кОм	8	9	9,5	10	2	3
19 кОм	9	9	9,5	10	2	3
100 кОм	9	11	12	13	2	3
190 кОм	9	11	12	13	2	3
1 МОм	16	18	20	23	2,5	5
1,9 МОм	17	19	21	24	3	6
10 МОм	33	37	40	46	10	14
19 МОм	43	47	50	55	20	24
100 МОм	100	110	115	120	50	60

Калибратор Fluke 5700A Series II

Номинал	Абсолютная погр	ешность характеристи	ческой величины ± 5°C	от t° калибровки¹	Относительная погрешность ±1°C		
	24 часа	90 дней	180 дней	1 год	24 часа	90 дней	
		1	± P	PPM	1		
95% уровень досто	оверности						
0 Ом	50 мкОм 5	0 мкОм	50 мкОм	50 мкОм	50 мкОм	50 мкОм	
1 Ом	70	80	85	95	32	40	
1,9 Ом	70	80	85	95	25	33	
10 Ом	21	23	27	28	5	8	
19 Ом	20	22	24	27	4	7	
100 Ом	13	14	15	17	2	4	
190 Ом	13	14	15	17	2	4	
1 кОм	9	10	11	13	2	3,5	
1,9 кОм	9	10	11	13	2	3,5	
10 кОм	7,5	9,5	10,5	12	2	3,5	
19 кОм	7,5	9,5	10,5	12	2	3,5	
100 кОм	9	11	12	14	2	3,5	
190 кОм	9	11	12	14	2	3,5	
1 МОм	13	15	17	20	2,5	5	
1,9 МОм	14	16	18	21	3	6	
10 МОм	27	31	34	40	10	14	
19 МОм	35	39	42	47	20	24	
100 МОм	90	100	105	110	50	60	
99% уровень досто	оверности	1	•	1	1		
0 Ом	50 мкОм 5	0 мкОм	50 мкОм	50 мкОм	50 мкОм	50 мкОм	
1 Ом	85	95	100	110	32	40	
1,9 Ом	85	95	100	110	25	33	
10 Ом	26	28	30	33	5	8	
19 Ом	24	26	28	31	4	7	
100 Ом	15	17	18	20	2	4	
190 Ом	15	17	18	20	2	4	
1 кОм	11	12	13	15	2	3,5	
1,9 кОм	11	12	13	15	2	3,5	
10 кОм	9	11	12	14	2	3,5	
19 кОм	9	11	12	14	2	3,5	
100 кОм	11	13	14	16	2	3,5	
190 кОм	11	13	14	16	2	3,5	
1 МОм	16	18	20	23	2,5	5	
1,9 МОм	17	19	21	24	3,5	6	
10 МОм	33	37	40	46	10	14	
19 МОм	43	47	50	55	20	24	
100 МОм	110	120	125	130	50	60	

Калибраторы Fluke 5720A/5700A Series II спецификация вторичных параметров и рабочих характеристик

		Температурный коэффициент₂				Максимальная разница между характеристической	«Добавка» от активной двухпроводной компенсации«	
Номинал	Стабильность ± 1°С¹ 24 часа	10°C . 40°C	0°C 10°C 40°C 50°C	Полный Диапазон нагрузок ³	Максимальный ток в пике	величиной и номиналом	Сопротивлен	ие «концов»
ПОМИНАЛ	± PPM	± PPN	l ∥°C	мА	MA	± PPM	0,1 Ом ± мС	
0 Ом	-	-	-	8500	500	- 2	4	
1 Ом	32	4	5	8100	700	500	2	4
1,9 Ом	25	6	7	8100	500	500	2	4
10 Ом	5	2	3	811	220	300	2	4
19 Ом	4	2	3	811	160	300	2	4
100 Ом	2	2	3	811	70	150	2	4
190 Ом	2	2	3	811	50	150	2	4
1 кОм	2	2	3	12	22	150	10	15
1,9 кОм	2	2	3	11,5	16	150	10	15
10 кОм	2	2	3	100500 мкА	7	150	50	60
19 кОм	2	2	3	50250 мкА	5	150	100	120
100 кОм	2	2	3	10100 мкА	1	150		
190 кОм	2	2	3	550 мкА	500 мкА	150		
1 МОм	2,5	2,5	6	520 мкА	100 мкА	200		
1,9 МОм	3,5	3	10	2,510 мкА	50 мкА	200		
10 МОм	10	5	20	0,52 мкА	10 мкА	300		
19 МОм	20	8	40	0,251 мкА	5 мкА	300		
100 МОм	50	12	100	50200 нА	1 мкА	500		

значения стабильности включены в величину абсолютной погрешности в таблице первичных характеристик

² . температурный коэффициент определяет «добавку» к заявленной погрешности, которая учитывается при выходе температуры за пределы ±5°C от температуры калибровки, или, если калибровка была выполнена при температуре окружающей среды вне диапазона 19°C . 24°C Два примера применения температурного коэффициента:

[•] Калибровка при 20°C: температурная «добавка» не учитывается, если только температура не опустится ниже 15°C или не превысит 25°C

[•] Калибровка при 26°C: требуется учесть температурный коэффициент на 2°C выхода за диапазон. Не потребуется учитывать дополнительный температурный коэффициент, если температура не опустится ниже 21°C или не поднимется выше 31°C

³ . при нагрузках, находящихся вне диапазона, воспользуйтесь поправочными коэффициентами, приведенными далее в таблице ухудшения рабочих параметров для таких нагрузок

⁴. Для сопротивлений менее 100 Ом можно ввести активную компенсацию по двухпроводной (половине моста) схеме подключения, с выбором за плоскость отсчета терминалы передней панели калибратора или входные разъемы мультиметра. Активная компенсация ограничена током нагрузки 11 мА и напряжением 2 В. Двухпроводная компенсация может быть применена только с омметрами, непрерывно выдающими (не импульсными источниками) постоянный ток.

Коэффициенты ухудшения токовых параметров для калибраторов Fluke 5720A/5700A Series II

Номинальная величина	Величина коэффициента ухудшения К при недостаточном или избыточном токе								
Сопротивление	Двухпроводная компенсация $I < I_L$	Четырехпроводная компенсация 1 $I < I_L$	Четырехпроводная компенсация 1 $I_U < I < I_{MAX}$						
Короткое замыкание (0)	4,4	0,3	·						
1 Ом	4,4	300	4 x 10 ⁻⁵						
1,9 Ом	4,4	160	1,5 x 10 ⁻⁴						
10 Ом	4,4	30	1,6 x 10 ⁻³						
19 Ом	4,4	16	3 x 10 ⁻³						
100 Ом	4,4	3,5	1 x 10 ⁻²						
190 Ом	4,4	2,5	1,9 x 10 ⁻²						
1 кОм	4,4	0,4	0,1						
1,9 кОм	4,4	0,4	0,19						
10 кОм	5000	50	2,0						
19 кОм	5000	50	3,8						
100 кОм	,	7,5	2 x 10 ⁻⁵						
190 кОм		4,0	3,8 x 10 ⁻⁵						
1 МОм		1,0	1,5 x 10 ⁻⁴						
1,9 МОм		0,53	2,9 x 10 ⁻⁴						
10 МОм	,	0,2	1 x 10 ⁻³						
19 МОм		0,53	1,9 x 10 ⁻³						
100 МОм		0,1	-						

^{1.} для токов I < I_L имеют место погрешности, возникающие под действием термо ЭДС внутри самого калибратора. Для определения величины такой погрешности воспользуйтесь следующим уравнением, и добавьте полученный результат к соответствующей погрешности или характеристике стабильности

Погрешность = $K(I_L . I)/(I_L x I)$, где:

результат выражен в мОм для величины двухпроводной компенсации и для четырехпроводного короткого замыкания, и в РРМ для остальных величин при четырех проводной схеме:

К. константа, взятая из вышеприведенной таблицы

I и I $_{\rm L}$ выражены в мА для сопротивлений от короткого замыкания до 1,9 кОм

I и I_L выражены в мкА для сопротивлений от 10 кОм до 100 МОм

Погрешность = $K(I^2 - I_{11}^2)$, где

К. константа, взятая из вышеприведенной таблицы

I и I выражены в мА для сопротивлений от короткого замыкания до 1,9 кОм

I и I $_{\rm u}$ выражены в мА для сопротивлений от 10 кОм до 100 МОм

². для I_U < I <I_{мах} дополнительные погрешности возникают из-за нагрева при работе самих сопротивлений калибратора. Для определения погрешности в PPM воспользуйтесь приведенным ниже уравнением, и добавьте результат к соответствующей погрешности или характеристике стабильности

постоянный ток

Калибратор Fluke 5720A

	B	Абсолютная по	грешность ± 5°C от т	емпературы калибр	овки	Относительная погрешность ±1°C		
Диапазон	Разрешение	24 часа	90 дней	180 дней	1 год	24 часа	90 дней	
95% уровен	ь достоверности	•		<u>'</u>	•	•		
	нА			± (PPM	выхода + нА)			
220 мкА	0,1	32 + 6	35 + 6	37 + 6	40 + 6	20 + 6	22 + 6	
2,2 мА	1	25 + 7	30 + 7	33 + 7	35 + 7	20 + 7	22 + 7	
22 мА	10	25 + 40	30 + 40	33 + 40	35 + 40	20 + 40	22 + 40	
	мкА		<u> </u>	± (PPM	выхода + мкА)	1	<u> </u>	
220 мА ¹	0,1	35 + 0,7	40 + 0,7	42 + 0,7	45 + 0,7	20 + 0,7	25 + 0,7	
2,2 A ¹	1	50 + 12	60 + 12	70 + 12	80 + 12	32 + 12	40 + 12	
Усилитель т	ока Fluke 5725A	•	<u> </u>	<u> </u>	•	1	<u> </u>	
11 A	10	330 + 470	340 + 480	350 + 480	360 + 480	100 + 130	110 + 130	
99% уровен	ь достоверности	•	-		-	•	-	
	нА			± (PPM	выхода + нА)			
220 мкА	0,1	40 + 7	42 + 7	45 + 7	50 + 7	24 + 7	26 + 7	
2,2 мА	1	30 + 8	35 + 8	37 + 8	40 + 8	24 + 8	26 + 8	
22 мА	10	30 + 50	35 + 50	37 + 50	40 + 50	24 + 50	26 + 50	
	мкА		<u> </u>	± (PPM	выхода + мкА)	1	<u> </u>	
220 мА ¹	0,1	40 + 0,8	45 + 0,8	47 + 0,8	50 + 0,8	26 + 0,8	30 + 0,8	
2,2 A ¹	1	60 + 15	70 + 15	80 + 15	90 + 15	40 + 15	45 + 15	
Усилитель т	ока Fluke 5725A	1	·	•	•	1	<u> </u>	
11 A	10	330 + 470	340 + 480	350 + 480	360 + 480	100 + 130	110 + 130	

Калибратор Fluke 5700A Series II

Диапазон	Разрешение	Абсолютная по	огрешность ± 5°C от т	емпературы калибр	овки	Относительная	ı погрешность ±1°С			
		24 часа	90 дней	180 дней	1 год	24 часа	90 дней			
95% уровен	ь достоверности	•	•							
	нА			± (PPM	выхода + нА)					
220 мкА	0,1	35 + 8	40 + 8	45 + 8	50 + 8	20 + 1,6	22 + 1,6			
2,2 мА	1	35 + 8	40 + 8	45 + 8	50 + 8	20 + 4	22 + 4			
22 мА	10	35 + 80	40 + 80	45 + 80	50 + 80	20 + 80	22 + 80			
	мкА		± (РРМ выхода + мкА)							
220 мА ¹	0,1	55 + 0,8	50 + 0,8	55 + 0,8	60 + 0,8	22 + 0,25	25 + 0,25			
2,2 A ¹	1	60 + 25	65 + 25	75 + 25	80 + 25	35 + 6	40 + 6			
Усилитель	ока Fluke 5725A	•	-	-		•				
11 A	10	330 + 470	340 + 480	350 + 480	360 + 480	100 + 130	110 + 130			
99% уровен	ь достоверности	•	•							
	нА			± (PPM	выхода + нА)					
220 мкА	0,1	45 + 10	50 + 10	55 + 10	60 + 10	24 + 2	26 + 2			
22 мА	1	45 + 10	50 + 10	55 + 10	60 + 10	24 + 5	26 + 5			
2,2 мА	10	45 + 100	50 + 100	55 + 100	60 + 100	24 + 50	24 + 50			
	мкА		•	± (PPM	выхода + мкА)	•	•			
220 мА ¹	0,1	40 + 1	30 + 0,8	45 + 1	47 + 1	50 + 1	26 + 0,8			
2,2 A ¹	1	60 + 30	70 + 30	80 + 30	90 + 30	40 + 7	45 + 7			
Усилитель	ока Fluke 5725A	•	•	•	•	•	•			
11 A	10	330 + 470	340 + 480	350 + 480	360 + 480	100 + 130	110 + 130			

Максимальный выходной ток на терминалах калибратора равен 2,2 А. Приведенные для диапазонов 220 мА и 2,2 А погрешности должны быть увеличены в 1,3 раза при выдаче сигнала через терминалы усилителя 5725А.

Для электромагнитный полей с напряженностью свыше 0,4 В/м, но меньшей или равной 3 В/м, погрешность возрастает на 1% от диапазона.

Выходные спецификации идентичны для всех возможных выходных терминалов.

^{1 –} необходимо добавить к заявленным погрешностям:

 $[\]pm 10 \text{ x } \text{ I}^2\text{PPM}$ для токов > 1 A в диапазоне 2,2 A

 $[\]pm 200 \text{ x I}^2$ PPM для токов > 100 мА в диапазоне 220 мА

Калибраторы Fluke 5720A/5700A Series II спецификация вторичных параметров и рабочих характеристик

Диапазон Стабильно ± 1°С ¹	24 часа	Температурный коэффициент ²		Продоль	Поправка на	Максимальная нагрузка при	Полоса частот шумов	
	Стабильность ± 1°С ¹	10°C . 40°C	0°C . 10°C 40°C . 50°C	Пределы - совместимости	напряжение нагрузки ³	нагрузка при сохранении полной точности ⁴	0,1 . 10 Гц двойного размаха амплитуды	0,1 . 10 Гц двойного размаха амплитуды
	± (РРМ выхода + нА)	± (РРМ вь	іхода + нА)/°С		± нA/B		± (РРМ выхода + нА)	нА
220 мкА	5 + 1	1 + 0,40	3 + 1	10	0,2	20 кОм	6 + 0,9	10
2,2 мА	5 + 5	1 + 2	3 + 10	10	0,2	2 кОм	6 + 5	10
22 мА	5 + 50	1 + 20	3 + 100	10	10	200 Ом	6 + 50	50
220 мА	8 + 300	1 + 200	3 + 1 мкА	10	100	20 Ом	9 + 300	500
2,2 A	9 + 7 мкА	1 + 2,5 мкА	3 + 10 мкА	3 ⁵	2 мкА	2 Ом	12 + 1,5 мкА	20 мкА
Усилитель	тока Fluke 5725A	ı	-	1	I			
	± (РРМ выхода + мкА)	± (РРМ выхода+мкА)/°С					± (РРМ выхода + мкА)	мкА
11 A	25 + 100	20 + 75	30 + 120	4	0	4 Ом	15 + 70	175

Максимальный выходной ток на терминалах калибратора равен 2,2 А. Приведенные для диапазонов 220 мА и 2,2 А погрешности должны быть увеличены в 1,3 раза при выдаче сигнала через терминалы усилителя 5725А.

Минимальный выходной сигнал:

Время установки на полную заявленную точность:

0 для всех диапазонов, включая 5725А

1 секунда для мкА и мА диапазонов; 3 секунды для диапазона 2,2 А; 6 секунд для диапазона 11 А; при смене диапазона или полярности нужно добавить еще 1

секунду

Перегрузка:

< 5%

^{1 -} значения стабильности включены в величину абсолютной погрешности в таблице первичных характеристик

² . температурный коэффициент определяет «добавку» к заявленной погрешности, которая учитывается при выходе температуры за пределы ±5°C от температуры калибровки

^{3.} поправка на напряжение нагрузки (burden voltage adder) добавляется к заявленным погрешностям в случае напряжения нагрузки свыше 0,5 В.

⁴ для больших нагрузок необходимо умножить приведенную величину погрешности на коэффициент, определяемый как сумма: 1 + (0,1 x реальная нагрузка)/(максимальная нагрузка, при которой сохраняется полная заявленная точность)

⁵ . Предельное совместимое напряжение калибратора равно 2 В для выходов тока от 1 А до 2,2 А. Усилитель тока 5725A может работать в режиме блокировки диапазона на 0 A (range-lock mode down to 0 A)

ПЕРЕМЕННЫЙ ТОК

Калибратор Fluke 5720A

Диапазон	Разрешение	Частота	Абсолютная	погрешность ± 5°	С от температур	ы калибровки	Относительная погрешность±1	
			24 часа	90 дней	180 дней	1 год	24 часа	90 дней
	-			•	± (РРМ вы	хода + нА)		•
220 мкА	1 нА	1020 Гц	210 + 16	230 + 16	240 + 16	250 + 16	210 + 16	230 + 16
		2040 Гц	130 + 10	140 + 10	150 + 10	160 + 10	110 + 10	130 + 10
		40 Гц1 кГц	100 + 8	110 + 8	115 + 8	120 + 8	80 + 8	90 + 8
		15 кГц	240 + 12	250 + 12	270 + 12	280 + 12	200 + 12	230 + 12
		510 кГц	800 + 65	900 + 65	1000 + 65	1100 + 65	700 + 65	800 + 65
2,2 мА	10 нА	1020 Гц	210 + 40	230 + 40	240 + 40	250 + 40	210 + 40	230 + 40
		2040 Гц	130 + 35	140 + 35	150 + 35	160 + 35	110 + 35	130 + 35
		40 Гц1 кГц	100 + 35	110 + 35	115 + 35	120 + 35	80 + 35	90 + 35
		15 кГц	170 + 110	180 + 110	190 + 110	200 + 110	200 + 110	230 + 110
		510 кГц	800 + 650	900 + 650	1000 + 650	1100 + 650	700 + 650	800 + 650
22 мА	100 нА	1020 Гц	210 + 400	230 + 400	240 + 400	250 + 400	210 + 400	230 + 400
		2040 Гц	130 + 350	140 + 350	150 + 350	160 + 350	110 + 350	130 + 350
		40 Гц1 кГц	100 + 350	110 + 350	115 + 350	120 + 350	80 + 350	90 + 350
		15 кГц	170 + 550	180 + 550	190 + 550	200 + 550	200 + 550	230 + 550
		510 кГц	800 + 5000	900 + 5000	1000 + 5000	1100 + 5000	700 + 5000	800 + 5000
				±	РРМ выхода + мі	(A)		•
220 мА	1 мкА	1020 Гц	210 + 4	230 + 4	240 + 4	250 + 4	210 + 4	230 + 4
		2040 Гц	130 + 3,5	140 + 3,5	150 + 3,5	160 + 3,5	110 + 3,5	130 + 3,5
		40 Гц1 кГц	100 + 2,5	110 + 2,5	115 + 2,5	120 + 2,5	80 + 2,5	90 + 2,5
		15 кГц	170 + 3,5	180 + 3,5	190 + 3,5	200 + 3,5	200 + 3,5	230 + 3,5
		510 кГц	800 + 10	900 + 10	1000 + 10	1100 + 10	700 + 10	800 + 10
2,2 A	10 мкА	20 Гц1 кГц	230 + 35	240 + 35	250 + 35	260 + 35	250 + 35	300 + 35
		15 кГц	350 + 80	390 + 80	420 + 80	450 + 80	400 + 80	440 + 80
		510 кГц	5000 + 160	6000 + 160	6500 + 160	7000 + 160	5000 + 160	6000 + 160
Усилитель т	ока Fluke 5725A							•
11 A	100 мкА	40 Гц1 кГц	370 + 170	400 + 170	440 + 170	460 + 170	300 + 170	330 + 170
		15 кГц	800 + 380	850 + 380	900 + 380	950 + 380	700 + 380	800 + 380
		510 кГц	3000 + 750	3300 + 750	3500 + 750	3600 + 750	2800 + 750	3200 + 750

Максимальный выходной ток на терминалах калибратора равен 2,2 А. Приведенные для диапазонов 220 мА и 2,2 А погрешности должны быть увеличены в 1,3 раза + 2 мкА при выдаче сигнала через терминалы усилителя 5725А.

Выходные спецификации идентичны для всех возможных выходных терминалов.

Для электромагнитных полей с напряженностью свыше 0,4 В/м, но меньшей или равной 3 В/м, погрешность возрастает на 1% от диапазона.

Калибратор Fluke 5720A

99% VDOBEH	ь достоверности							
Диапазон	Разрешение	Частота	Абсолютная	погрешность ± 5°	і калибровки	Относительная погрешность ±1°C		
			24 часа	90 дней	180 дней	1 год	24 часа	90 дней
± (РРМ выход	да + нА)	I.			l			1
220 мкА	1 нА	1020 Гц	260 + 20	280 + 20	290 + 20	300 + 20	260 + 20	280 + 20
		2040 Гц	170 + 12	180 + 12	190 + 12	200 + 12	130 + 12	150 + 12
		40Гц1 кГц	120 + 10	130 + 10	135 + 10	140 + 10	100 + 10	110 + 10
		1.5 кГц	300 + 15	320 + 15	340 + 15	350 + 15	250 + 15	280 + 15
		510 кГц	1000 + 80	1100 + 80	1200 + 80	1300 + 80	900 + 80	1000 + 80
2,2 мА	10 нА	1020 Гц	260 + 50	280 + 50	290 + 50	300 + 50	260 + 50	280 + 50
		2040 Гц	170 + 40	180 + 40	190 + 40	200 + 40	130 + 40	150 + 40
		40Гц1 кГц	120 + 40	130 + 40	135 + 40	140 + 40	100 + 40	110 + 40
		1.5 кГц	210 + 130	220 + 130	230 + 130	240 + 130	250 + 130	280 + 130
		510 кГц	1000 + 800	1100 + 800	1200 + 800	1300 + 800	900 + 800	1000 + 800

22 мА	100 нА	1020 Гц	260 + 500	280 + 500	290 + 500	300 + 500	260 + 500	280 + 500		
		2040 Гц	170 + 400	180 + 400	190 + 400	200 + 400	130 + 400	150 + 400		
		40Гц1 кГц	120 + 400	130 + 400	135 + 400	140 + 400	100 + 400	110 + 400		
		1.5 кГц	210 + 700	220 + 700	230 + 700	240 + 700	250 + 700	280 + 700		
		510 кГц	1000 + 6000	1100 + 6000	1200 + 6000	1300 + 6000	900 + 6000	1000 + 6000		
			± (РРМ выхода + мкА)							
220 мА	1 мкА	1020 Гц	260 + 5	280 + 5	290 + 5	300 + 5	260 + 5	280 + 5		
		2040 Гц	170 + 4	180 + 4	190 + 4	200 + 4	130 + 4	150 + 4		
		40Гц1 кГц	120 + 3	130 + 3	135 + 3	140 + 3	100 + 3	110 + 3		
		1.5 кГц	210 + 4	220 + 4	230 + 4	240 + 4	250 + 4	280 + 4		
		510 кГц	1000 + 12	1100 + 12	1200 + 12	1300 + 12	900 + 12	1000 + 12		
2,2 A	10 мкА	20Гц1 кГц	290 + 40	300 + 40	310 + 40	320 + 40	300 + 40	350 + 40		
		1.5 кГц	440 + 100	460 + 100	480 + 100	500 + 100	500 + 100	520 + 100		
		510 кГц	6000 + 200	7000 + 200	7500 + 200	8000 + 200	6000 + 200	7000 + 200		
Усилитель	ь тока Fluke 5725	A								
11 A	100 мкА	40Гц1 кГц	370 + 170	400 + 170	440 + 170	460 + 170	300 + 170	330 + 170		
		1.5 кГц	800 + 380	850 + 380	900 + 380	950 + 380	700 + 380	800 + 380		
		510 кГц	3000 + 750	3300 + 750	3500 + 750	3600 + 750	2800 + 750	3200 + 750		

Максимальный выходной ток на терминалах калибратора равен 2,2 А. Приведенные для диапазонов 220 мА и 2,2 А погрешности должны быть увеличены в 1,3 раза + 2 мкА при выдаче сигнала через терминалы усилителя 5725А.

Выходные спецификации идентичны для всех возможных выходных терминалов.

Для электромагнитных полей с напряженностью свыше 0,4 В/м, но меньшей или равной 3 В/м, погрешность возрастает на 1% от диапазона.

Калибратор Fluke 5700A Series II

Диапазон	Разрешение	Частота	Абсолютная погрешность ± 5°C от температуры калибровки				Относительная погрешность ±1°C	
			24 часа	90 дней	180 дней	1 год	24 часа	90 дней
± (РРМ выхода	а + нА)							
220 мкА	1 нА	1020 Гц	550 + 25	600 + 25	650 + 25	700 + 25	375 + 25	400 + 25
		2040 Гц	280 + 20	310 + 20	330 + 20	350 + 20	220 + 20	250 + 20
		40Гц1 кГц	100 + 16	120 + 16	130 + 16	140 + 16	90 + 16	100 + 16
		1.5 кГц	400 + 40	500 + 40	550 + 40	600 + 40	375 + 40	400 + 40
		510 кГц	1300 + 80	1400 + 80	1500 + 80	1600 + 80	1200 + 80	1200 + 80
2,2 мА	10 нА	1020 Гц	550 + 40	600 + 40	650 + 40	700 + 40	375 + 40	400 + 40
		2040 Гц	280 + 35	310 + 35	330 + 35	350 + 35	220 + 35	250 + 35
		40Гц1 кГц	100 + 35	120 + 35	130 + 35	140 + 35	90 + 35	100 + 35
		1.5 кГц	400 + 400	500 + 400	550 + 400	600 + 400	375 + 400	400 + 400
		510 кГц	1300 + 800	1400 + 800	1500 + 800	1600 + 800	1200 + 800	1200 + 800
22 мА	100 нА	1020 Гц	550 + 400	600 + 400	650 + 400	700 + 400	375 + 400	400 + 400
		2040 Гц	280 + 350	310 + 350	330 + 350	350 + 350	220 + 350	250 + 350
		40Гц1 кГц	100 + 350	120 + 350	130 + 350	140 + 350	90 + 350	100 + 350
		1.5 кГц	400 + 4000	500 + 4000	550 + 4000	600 + 4000	375 + 4000	400 + 4000
		510 кГц	1300 + 8000	1400 + 8000	1500 + 8000	1600 + 8000	1200 + 8000	1200 + 8000
					± (РРМ вь	іхода + мкА)		
220 мА	1 мкА	1020 Гц	550 + 4	600 + 4	650 + 4	700 + 4	375 + 4	400 + 4
		2040 Гц	280 + 3,5	310 + 3,5	330 + 3,5	350 + 3,5	220 + 3,5	250 + 3,5
		40Гц1 кГц	100 + 3,5	120 + 3,5	130 + 3,5	140 + 3,5	90 + 3,5	100 + 3,5
		1.5 кГц	400 + 40	500 + 40	550 + 40	600 + 40	375 + 40	400 + 40
		510 кГц	1300 + 80	1400 + 80	1500 + 80	1600 + 80	1200 + 80	1200 + 80
2,2 A	10 мкА	20Гц1 кГц	500 + 35	550 + 35	600 + 35	650 + 35	500 + 35	550 + 35
		1.5 кГц	600 + 80	650 + 80	700 + 80	750 + 80	550 + 80	650 + 80
		510 кГц	6500 + 160	7500 + 160	8000 + 160	8500 + 160	6000 + 160	7000 + 160
Усилитель то	ка Fluke 5725A							
11 A	100 мкА	40Гц .1 кГц	370 + 170	400 + 170	440 + 170	460 + 170	300 + 170	330 + 170
		15 кГц	800 + 380	850 + 380	900 + 380	950 + 380	700 + 380	800 + 380
		510 кГц	3000 + 750	3300 + 750	3500 + 750	3600 + 750	2800 + 750	3200 + 750

Максимальный выходной ток на терминалах калибратора равен 2,2 А. Приведенные для диапазонов 220 мА и 2,2 А погрешности должны быть увеличены в 1,3 раза + 2 мкА при выдаче сигнала через терминалы усилителя 5725А.

Выходные спецификации идентичны для всех возможных выходных терминалов.

Для электромагнитных полей с напряженностью свыше 0,4 В/м, но меньшей или равной 3 В/м, погрешность возрастает на 1% от диапазона.

Калибратор Fluke 5700A Series II

Диапазон	Разрешение	Частота	Абсолютная по	грешность ± 5°C (калибровки	Относительная ±1°C	погрешность	
	1		24 часа	90 дней	180 дней	1 год	24 часа	90 дней
± (РРМ выход	ца + нA)				I .			I
220 мкА	1 нА	1020 Гц	650 + 30	700 + 30	750 + 30	800 + 30	450 + 30	500 + 30
		2040 Гц	350 + 25	380 + 25	410 + 25	420 + 25	270 + 25	300 + 25
		40Гц1 кГц	120 + 20	140 + 20	150 + 20	160 + 20	110 + 20	120 + 20
		15 кГц	500 + 50	600 + 50	650 + 50	700 + 50	450 + 50	500 + 50
		510 кГц	1500 + 100	1600 + 100	1700 + 100	1800 + 100	1400 + 100	1500 + 100
2,2 мА	10 нА	1020 Гц	650 + 50	700 + 50	750 + 50	800 + 50	450 + 50	500 + 50
		2040 Гц	350 + 40	380 + 40	410 + 40	420 + 40	270 + 40	300 + 40
		40Гц1 кГц	120 + 40	140 + 40	150 + 40	160 + 40	110 + 40	120 + 40
		15 кГц	500 + 500	600 + 500	650 + 500	700 + 500	450 + 500	500 + 500
		510 кГц	1500 + 1000	1600 + 1000	1700 + 1000	1800 + 1000	1400 + 1000	1500 + 1000
22 мА	100 нА	1020 Гц	650 + 500	700 + 500	750 + 500	800 + 500	450 + 500	500 + 500
		2040 Гц	350 + 400	380 + 400	410 + 400	420 + 400	270 + 400	300 + 400
		40Гц1 кГц	120 + 400	140 + 400	150 + 400	160 + 400	110 + 400	120 + 400
		15 кГц	500 + 5000	600 + 5000	650 + 5000	700 + 5000	450 + 5000	500 + 5000
		510 кГц	1500 + 10000	1600 + 10000	1700 + 10000	1800 + 10000	1400 + 10000	1500 + 10000
			± (РРМ выхода	+ мкА)				
220 мА	1 мкА	1020 Гц	650 + 5	700 + 5	750 + 5	800 + 5	450 + 5	500 + 5
		2040 Гц	350 + 4	380 + 4	410 + 4	420 + 4	270 + 4	300 + 4
		40Гц1 кГц	120 + 4	140 + 4	150 + 4	160 + 4	110 + 4	120 + 4
		15 кГц	500 + 50	600 + 50	650 + 50	700 + 50	450 + 50	500 + 50
		510 кГц	1500 + 100	1600 + 100	1700 + 100	1800 + 100	1400 + 100	1500 + 100
2,2 A	10 мкА	20Гц1 кГц	600 + 40	650 + 40	700 + 40	750 + 40	600 + 40	650 + 40
		15 кГц	700 + 100	750 + 100	800 + 100	850 + 100	650 + 100	750 + 100
		510 кГц	8000 + 200	9000 + 200	9500 + 200	10000 + 200	7500 + 200	8500 + 200
Усилитель т	ока Fluke 5725A							
11 A	100 мкА	40Гц1 кГц	370 + 170	400 + 170	440 + 170	460 + 170	300 + 170	330 + 170
		15 кГц	800 + 380	850 + 380	900 + 380	950 + 380	700 + 380	800 + 380
		510 кГц	3000 + 750	3300 + 750	3500 + 750	3600 + 750	2800 + 750	3200 + 750
	•	•	•				•	•

Максимальный выходной ток на терминалах калибратора равен 2,2 А. Приведенные для диапазонов 220 мА и 2,2 А погрешности должны быть увеличены в 1,3 раза

+ 2 мкА при выдаче сигнала через терминалы усилителя 5725А.
Выходные спецификации идентичны для всех возможных выходных терминалов. Для электромагнитных полей с напряженностью свыше 0,4 В/м, но меньшей или равной 3 В/м, погрешность возрастает на 1% от диапазона.

Калибраторы Fluke 5720A/5700A Series II спецификация вторичных параметров и рабочих характеристик

			Температурн	ый коэффициент2	Пределы	Максимальная	Шум и искажения
Диапазон	Частота	Стабильность ±1°С₁ за 24 часа	10°C .40°C	0°C .10°C 40°C .50°C	совместимос	резистивная нагрузка до полной точностиз	полоса 10 Гц . 10 МГц напряжение нагрузки <0,5 В
		±(РРМ выхода + нА)	±(РРМ выхода	+ нА)/°С	В эфф		± (%выхода + мкА)
220 мкА	1020 Гц	150 + 5	50 + 5	50 + 5			0,05 + 0,1
	2040 Гц	80 + 5	20 + 5	20 + 5]		0,05 + 0,1
	40Гц1 кГц	30 + 3	4 + 0,5	10 + 0,5	7	2 кОм	0,05 + 0,1
	15 кГц	50 + 20	10 + 1	20 + 1			0,25 + 0,5
	510 кГц	400 + 100	20 + 100	20 + 100			0, 5 + 1
2,2 мА	1020 Гц	150 + 5	50 + 5	50 + 5			0,05 + 0,1
	2040 Гц	80 + 5	20 + 4	20 + 4			0,05 + 0,1
	40Гц1 кГц	30 + 3	4 + 1	10 + 2	7	500 Ом	0,05 + 0,1
	15 кГц	50 + 20	10 + 100	20 + 10			0,25 + 0,5
	510 кГц	400 + 100	50 + 400	50 + 400			0, 5 + 1
22 мА	1020 Гц	150 + 50	50 + 10	50 + 10			0,05 + 0,1
	2040 Гц	80 + 50	20 + 10	20 + 10			0,05 + 0,1
	40Гц1 кГц	30 + 30	4 + 10	10 + 20	7	150 Ом	0,05 + 0,1
	15 кГц	50 + 500	10 + 500	20 + 400			0,25 + 0,5
	510 кГц	400 + 1000	50 + 1000	50 + 1000]		0, 5 + 1
		± (РРМ выхода + мкА)	± (РРМ вы	хода + мкА/°С)			
220 мА	1020 Гц	150 + 0,5	50 + 0,05	50 + 0,05			0,05 + 10
	2040 Гц	80 + 0,5	20 + 0,05	20 + 0,05]		0,05 + 10
	40Гц1 кГц	30 + 0,3	4 + 0,1	10 + 0,1	7	15 Ом	0,05 + 10
	15 кГц	50 + 3	10 + 2	20 + 2			0,25 + 50
	510 кГц	400 + 5	50 + 5	50 + 5			0, 5 + 100
2,2 A	20Гц1 кГц	50 + 5	4 + 1	10 + 1			0,5 + 100
	15 кГц	80 + 20	10 + 5	20 + 5	1,4 ⁴	0,5 Ом	0,3 + 500
	510 кГц	800 + 50	50 + 10	50 + 10]		1 + 1 MA
Усилитель т	ока Fluke 5725A						
							± (%выхода)
11 A	40Гц1 кГц	75 + 100	20 + 75	30 + 75			
	15 кГц	100 + 150	40 + 75	50 + 75	3	3	Примечание ⁵
	510 кГц	200 + 300	100 + 75	100 + 75			

Максимальный выходной ток на терминалах калибратора равен 2,2 А. Приведенные для диапазонов 220 мА и 2,2 А погрешности должны быть увеличены в 1,3 раза

Выходные спецификации идентичны для всех возможных выходных терминалов.

(реальная нагрузка / максимальная нагрузка, при которой сохраняется полная заявленная точность)²

Минимальный выходной сигнал: 9 мкА для диапазона 220 мкА; 10% для всех других диапазонов. Для 5725А минимальный ток 1 А.

Предельные индуктивные нагрузки: 400 мкГн (5700A/5720A или 5725A). 20 мкГн для выхода 5700A/5720A более 1A

Коэффициент мощности: 5700А/5720А: 0,9 . 1; 5725А: 0,1 . 1, в зависимости от предельных значений совместимого напряжения

Частота:

Диапазон: 10,000 . 11,999; 12,00 . 119,99; 120,0 . 1199,9 Гц; 1,200 . 10,000 кГц

Погрешность: ± 0,01% Разрешение: 11999 (подсчет)

Время установки на полную заявленную точность: 5 секунд для диапазонов 5700А/5720А; 6 секунд для диапазона 11 А усилителя 5725А; при

смене диапазона амплитуды или частоты нужно добавить еще 1 секунду

Перегрузка: < 10%

^{+ 2} мкА при выдаче сигнала через терминалы усилителя 5725А.

^{1 -} значения стабильности включены в величину абсолютной погрешности в таблице первичных характеристик

². температурный коэффициент определяет «добавку» к заявленной погрешности, которая учитывается при выходе температуры за пределы ±5°C от температуры капибровки

³ . для больших резистивных нагрузок заявленная погрешность должна быть умножена на множитель, определяемый по формуле:

^{4.} совместимое напряжение для токов свыше 1 A равно 1,5 B. Усилитель тока 5725A может работать в режиме блокировки диапазона на 1 A (range-lock mode down to 1 A)

^{5.} для резистивных нагрузок внутри заявленных пределов совместимых напряжений

Калибратор Fluke 5720A

ПЕРЕМЕННОЕ НАПРЯЖЕНИЕ С ШИРОКОПОЛОСНЫМ ЧАСТОТНЫМ МОДУЛЕМ 5700А . 03

Калибраторы Fluke 5720A/5700A Series II

Диапазон		Разрешение	Абсолютная погрешность $\pm5^\circ$ С от температуры калибровки в полосе 30 Гц.500 кГ					
		1	24 часа	90 дней	180 дней	1 год		
В	дБм		± (% выхода + мкВ)					
1,1 мВ	- 46	10 нВ	0,4 + 0,4	0,5 + 0,4	0,6 + 0,4	0,8 + 2		
3 мВ	- 37	10 нВ	0,4 + 1	0,45 + 1	0,5 + 1	0,7 + 3		
11 мВ	- 26	100 нВ	0,2 + 4	0,35 + 4	0,5 + 4	0,7 + 8		
33 мВ	- 17	100 нВ	0,2 + 10	0,3 + 10	0,45 + 10	0,6 + 16		
110 мВ	- 6,2	1 мкВ	0,2 + 40	0,3 + 40	0,45 + 40	0,6 + 40		
330 мВ	+ 3,4	1 мкВ	0,2 + 100	0,25 + 100	0,35 + 100	0,5 + 100		
1,1 B	+ 14	10 мкВ	0,2 + 400	0,25 + 400	0,35 + 400	0,5 + 400		
3,5 B	+ 24	10 мкВ	0,15 + 500	0,2 + 500	0,3 + 500	0,4 + 500		

Частота	Частотное разрешение	Неравномерность амплитуды, 1 кГц опорная частота Диапазон напряжения ± %			Температурный коэффициент	Установочное время до заявленной точности	Гармонические искажения
		1,1 мВ	3 мВ	> 3 mB	±PPM/°C	секунды	дБ
1030 Гц	0,01 Гц	0,3	0,3	0,3	100	7	-40
30120 Гц	0,01 Гц	0,1	0,1	0,1	100	7	-40
120 Гц1,2 кГц	0,1 Гц	0,1	0,1	0,1	100	5	-40
1,212 кГц	1 Гц	0,1	0,1	0,1	100	5	-40
12 . 120 кГц	10 Гц	0,1	0,1	0,1	100	5	-40
120 кГц1,2 МГц	100 Гц	0,2 + 3 мкВ	0,1 + 3 мкВ	0,1 + 3 мкВ	100	5	-40
1,22 МГц	100 кГц	0,2 + 3 мкВ	0,1 + 3 мкВ	0,1 + 3 мкВ	100	0,5	-40
210 МГц	100 кГц	0,4 + 3 мкВ	0,3 + 3 мкВ	0,2 + 3 мкВ	100	0,5	-40
1020 МГц	1 МГц	0,6 + 3 мкВ	0,5 + 3 мкВ	0,4 + 3 мкВ	150	0,5	-34
2030 МГц	1 МГц	1,5 + 15 мкВ	1,5 + 3 мкВ	1 + 3 мкВ	300	0,5	-34

Дополнительная рабочая информация:

Опорный уровень дБм = 50 Ом

Границы диапазона даны в точках напряжения, указаны приблизительные уровни дБм

дБм (dBm) = 10 log от (мощность/1 мвт); 0,22361 В на нагрузке 50 Ом = 1 мвт или 0 дБм

Минимальный выходной сигнал: 300 мкВ (-57 дБм)

Погрешность частоты: ± 0,01%

Частотное разрешение: 11,999 (подсчет) до 1,1999 МГц; 119 (подсчет) до 30 МГц

Защита от перегрузки: короткое замыкание на широкополосном выходе не приведет к повреждению изделия. После устранения короткого

замыкания прибор вернется к нормальной эксплуатации по истечении установочного времени

ОБЩИЕ СВЕДЕНИЯ

Время прогрева: 2-х кратный интервал, истекший с момента выключения или максимально 30 минут (что меньше)

Варианты исполнения и монтажа: выходные разъемы на задней панели, комплект для установки в 19-ти дюймовую приборную стойку

Стандартно устанавливаемые интерфейсы: IEEE-488; RS-232; 5725A; 5205A или 5215A; 5220A; вход для синхронизации BNC, выход опорной фазы BNC

Температура окружающей среды:

Рабочая: 0°C . 50°C Калибровки: 15°C . 35°C Хранения: -40°C . 75°C

Относительная влажность:

Рабочая: <80 % до 30°C; <70% до 40°C; <40% до 50°C

Хранения: <95%, неконденсированная. После длительного хранения при высоких температуре и влажности может потребоваться стабилизационный период длительностью до 4 суток при включенном питании калибратора

Электробезопасность: отвечает UL311; IEC 349-1978; IEC 66E (CO) 4; CSA 556B

Изоляция схемы защиты (Guard isolation): 20 вольт

Электромагнитная совместимость: отвечает нормам совместимости и помехозащищенности FCC Part 15, Subpart J, Class B; VDE 0871, Class B

Требования к сетевому питанию:

частота: 47 - 63 Гц

напряжение: переключаемое на номинальные значения 100 B; 110 B; 110 B; 120 B; 200 B; 200 B; 230 B; 240 B с допуском \pm 10% потребляемая мощность: 5700A/5720A: максимально 300 BA; 5725A: максимально 750 BA

Габаритные размеры:

5700A/5720A: высота 17,8 см, стандартная высота зазора для монтажа в приборную стойку плюс 1,5 см высота ножек ширина 43,2 см, стандартная ширина приборной стойки; полная глубина 63 см, собственная 57,8 см, глубина стойки 5725A: высота 13,3 см, остальные размеры аналогичны 5700A/5720A
При установке в приборную стойку оба прибора выступают из нее на 5,1 см

Bec:

5700A/5720A: 27 кг 5725A: 32 кг

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВНЕШНИХ ДОПОЛНИТЕЛЬНЫХ УСИЛИТЕЛЕЙ

Полные сведения приведены в соответствующих руководствах по эксплуатации моделей 5205А и 5220А

5205A (220 . 1100 В переменного тока; 0 . 1100В постоянного тока)

Перегрузка: <10%

Искажения (полоса частот 10 Гц. 1 МГц):

Частота	Точность 90 дней при 23°C ± 5°C	Температурный коэффициент1	
	± (% выхода + % диапазона)	± (РРМ выхода + РРМ диапазона)/°С	
Постоянный ток (0)	0,05 + 0,005	15 + 3	
10 Гц40 Гц	0,15 + 0,005	45 + 3	
40 Гц20 кГц	0,04 + 0,004	15 + 3	
20 кГц50 кГц	0,08 + 0,006	50 + 10	
50 кГц100 кГц	0,1 + 0,01	70 + 20	

^{1.} температурный коэффициент применим при температуре окружающей среды 0°C . 18°C и 28°C . 50°C

5220А (переменный ток; 180-дневная спецификация)

Точность:

20 Гц. 1 кГц 0,07% + 1 мА

1 кГц . 5 кГц (0,07% + 1 мА) х значение частоты в кГц

Температурный коэффициент1: (0,003% + 100 мА)/°С

¹ . температурный коэффициент применим при температуре окружающей среды 0°C . 18°C и 28°C . 50°C

Искажения (полоса частот 300 кГц):

10 Гц. 1 кГц 0,1% + 1 мА

1 кГц . 5 кГц (0,1% + 1 мА) х значение частоты в кГц

Примечание: Данные для индуктивных нагрузок для комбинации 5700A/5720A + 5220A не специфицируются

ТРЕБОВАНИЯ ПО КАЛИБРОВКЕ

Для калибровки 5700A Series II и 5720A калибраторов до полного соответствия заявленным спецификациям абсолютных погрешностей достаточно трех следующих эталонов:

Эталон	Параметр	Номинал	Максимальная погрешность (относительно государственного эталона)	Юстируемый параметр (корректируемая погрешность)
Fluke 732B	пост. напряжение	10 B	± 1,5 РРМ постоянное напряжение, переменное напряжение,	постоянный ток, переменный ток
Fluke 742A-1	сопротивление	1 Ом	± 10 PPM	1 Ом, 1,9 Ом
Fluke 742A-10K	сопротивление	10 кОм 10Ом . 100 МОм	± 4 PPM	постоянный ток, переменный ток

Для полной калибровки всех параметров специально разработана и встроена в калибраторы 5700A/5720A простая процедура с пошаговыми подсказками оператору с использованием переносных эталонов производства Fluke.

Калибровка может быть выполнена при любой температуре окружающей среды в диапазоне 15°C . 35°C с сохранением всех заявленных погрешностей, за исключением сопротивления. Спецификации погрешностей по сопротивлению должны быть модифицированы с применением температурного коэффициента при температуре окружающей среды ниже 19°C и выше 24°C.

Для калибровки могут применяться эталоны с погрешностями, отличающимися от приведенных в таблице. Абсолютные погрешности, в этом случае, должны быть модифицированы с помощью алгебраической разницы между используемым стандартом и приведенным в Таблице. Например, если мера напряжения имеет погрешность ± 2,5 PPM, то абсолютная погрешность по постоянному напряжению должна быть увеличена на ± 1 PPM. Эта дополнительная погрешность должна быть добавлена ко всем функциям (юстируемым с помощью данного эталона), приведенным в правой колонке таблице.